2024.05.09

Cell On/Off Parameter Optimization for Saving Energy via Reinforcement Learning

Mobile Communication Lab Weekly Seminar

Index Terms: Cell on/off, energy-saving, network, artificial intelligence

2023310331 Geon Kim

OUTLINE

- 1. Why this paper?
- 2. Summary of paper
- 3. Take away

Why this paper?

- Formulating an RL problem controlling a cell on/off algorithm in a way to minimize energy consumption while satisfying throughput constraints
- Proposing a range of operational modes on top of the trained RL agent
- Presenting experimental results with a replicative simulator

Summary of paper

- The energy that base stations consume has increased compared to the legacy system, thus placing a high burden on service providers in **OPEX (OPeration Expendigure)**
- Along with the OPEX reduction, saving energy decrease carbon emission, thus, preserve environments
- This paper address the energy saving of base stations by turning off cells, while not severely impacting network performance

- Turning the cells off varies depending on the traffic, channel characteristics, and mobility pattern of the users associated with the cells
- Designing a universal algorithm that can be applied to all circumstances is almost infeasible. Also, each network operator has its own criteria on service level
- The energy saving needs to be personalized and adaptive to the circumstanceds as well as the network operator's requirements.

- It is infeasible to try out unproven controls on actual RAN equipment for it would degrade user experience by interrupting the service
 - Most reinforcement learning based problem formulations make use of simulations
- Author utilizes a replicative simulator that has a capability to reconstruct the states and the behaviors of an actual RAN based on the observed data from it
- To match with the LTE configuration of the target region, four spectrum bands each with the corresponding spectrum characteristics are virtually implemented

 ВООМЫ: - 900ML: СПРА
 ES9
 849
 904.3
 914.3

 10ML
 10ML
 10ML
 10ML
 10ML
 958.3

 674
 LTE
 884
 (LTE)
 894
 94.3
 (LTE)

 1.86L: CIPE
 IT75
 1725
 1730
 1735
 1740
 1745
 1765

 1.86L: CIPE
 1715
 1725
 1730
 1735
 1740
 1745
 1765

 1.86L: CIPE
 1830
 (LTE)
 1800
 20ML
 1800
 100ML
 100ML

 1810
 (LTE)
 1830
 (LTE)
 1860
 1975
 1980
 200L
 100ML
 20ML
 20ML

Figure 1. Frequency band allocation for South Korean telcos

- Cell on/off algorithm which proposed in this paper works with a couple of threshnold values on the PRB utilization
 - 1. Activation threshold
 - 2. Deactivation threshold
- After the cell activation or deactivation, UEs are distributed among the activated cells by a load balancing algorithm
- It is crucial to find **the appropriate threshold values** for the algorithm to operate optimally depending on the state of the network

- The RAN topology consists of three sectors on a single site and four cells per sector (4 * 3 = 12 cells)
 - Each cell is served by a separate RU with a different power consumption profile depending on serving bandwidth and hardware settings
- Power consumption linearly increases with the number of PRB in use
- Many factors to consider when deciding optimal thresholds for energy saving algorithm
 - Bandwidth, power model, hardware configurations, traffic pattern etc.

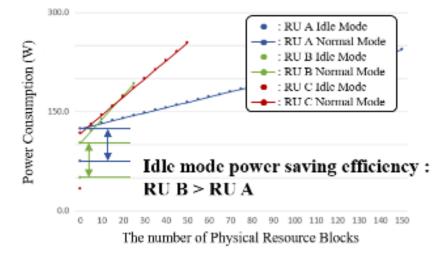


Figure 2. Power consumption trend according to active RBs per cell

- PPO (Proximal Policy Optimization), or DDPG (Deep Deterministic Policy Gradient) are used to derive an **optimal policy**, $\pi(a|s)$
- Detailed formulation
 - State

$$s_t^i = (l_{t-1}^i, \dots, l_{t-K}^i, c_{t-1}^i, \dots, c_{t-K}^i)$$

- l_t^i : Load of cell *i* at time *k*
- c_t^i : On/Off state of cell *i*
- Action:
 - Activation and deactivation threshold for cell *i* at time *t*

- Detailed formulation
 - Reward
 - Power reward: *r*_{power}
 - $r_{power} = \beta_0^p + \beta_1^p l_t^i c$ - $\beta_0^p : 1$ - $\beta_1^p : -1/(P_{max} - P_{min})$
 - Throughput reward: r_{tput}

 $r_{tput} = \begin{cases} \beta_0^{tp} + \beta_1^{tp} k_t^i, & \text{if } k_t^i > Q \\ \beta_0^d + \beta_1^d k_t^i, & \text{otherwise} \end{cases}$

- q: Minimum throughput constraint
- k_t^i : Throughput of cell *i* at time *t*
- $\beta_0^{tp}: -q/(T_{max} q)$
- $\beta_1^{tp}: 1/(T_{max} q)$
- β_0^d : -10q
- β_1^d : 10VV

Total reward

 $r_t = \sum (\alpha r_{power} + (1 - \alpha) r_{tput})$

Where α is a real number satisfying $0 < \alpha < 1$

- PPO is known to provide robust performance on the convergence of the training and support both the discrete and continuous action space
- Make use of *M* multiple simulation instances in a cluster of CPU machines in parallel to generate a tremendous amount of required experiences

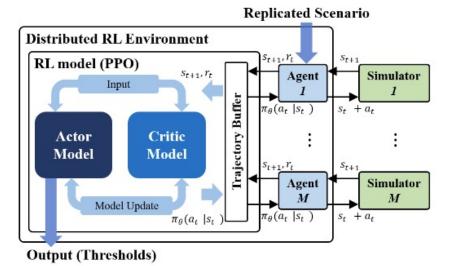


Figure 3. Reinforcement Learning based Energy Saving Model

Architecture with Distributed Comoputing Techniques

- To balance between the energy saving performance and cost of running the AI-based solution, this paper explores various operational modes
- One extreme mode is to dynamically apply inferred actions from the trained models
 - Computation power at the backside of the system 1
 - Requiring more resources
- Propose to operate the energy saving solutions whith scheduling tables of the thresholds generated offline
 - Tables can be created using trained models and a network status prediction module to forecast future network conditions
- By varying periods for controls and prediction, we can balance the performance and the required computation power

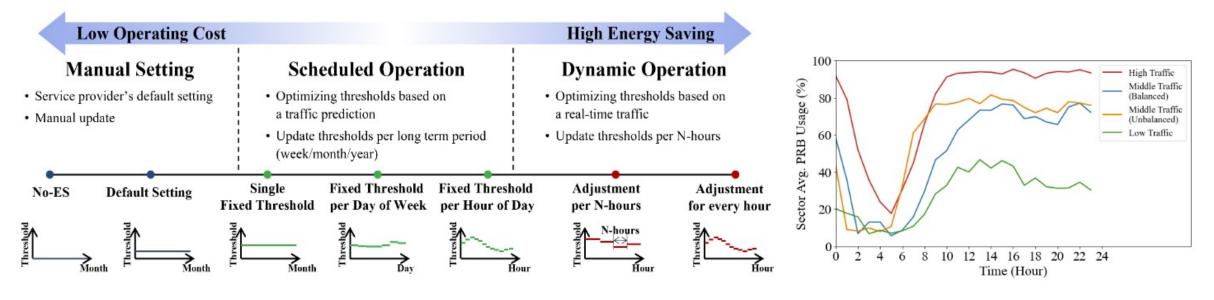


Figure 4. Range of operationg options

Figure 5. Traffic data used in the experiments

- Dynamic operation:
 - Maximizes energy-saving performance
- Offline-based operation
 - Cost-effective energy savings

- No-ES
 - All cells are activated for all time
- Aggressive/Conservative Daily Fixed Threshold
 - Aggressive algorithm
 - Higher values on both thresholds
 - Deactivate and activate: 60%, 80%
 - Conservative algorithm
 - Lower values on both thresholds
 - Deactivate and activate: 20%, 40%

- Sector/Cell-wise Daily Fixed Threshold
 - Thresholds are determined with the history of traffic load
 - Deactivate and activate: 25%, 75%
- RL-based Daily Fixed Threshold
 - Infers a single set of thresholds for a day
- RL-based Hourly Fixed Threshold
 - Infers threshold values per hour for a scenario

Scenario	Algorithm	Power	Throughput	Violation
Low Traffic	No-ES	449 W	7.65 Mbps	0.00%
	Conservative	-1.86%	-8.66%	+0.00%p
	Aggressive	-4.89%	-57.01%	+9.03%p
	Sector-wise	-0.52%	-1.49%	+0.00%p
	Cell-wise	-0.71%	-1.94%	+0.00%p
	RL Daily	-11.87%	-11.94%	+0.00%p
	RL Hourly	-11.90%	-8.21%	+0.00%p
Middle Traffic	No-ES	513 W	2.59 Mbps	0.35%
	Conservative	-1.48%	-0.77%	+0.34%p
	Aggressive	-2.48%	-7.34%	+2.43%p
	Sector-wise	-1.83%	+0.39%	-0.35%p
(Balanced)	Cell-wise	-1.07%	+3.09%	-0.35%p
	RL Daily	-5.68%	-6.18%	-0.35%p
	RL Hourly	-5.99%	-9.65%	+0.34%p
	No-ES	535 W	1.84 Mbps	3.82%
Middle Traffic (Imbalanced)	Conservative	-0.74%	-2.17%	+0.35%p
	Aggressive	-1.38%	-4.35%	+1.04%p
	Sector-wise	-0.52%	-1.09%	-1.04%p
	Cell-wise	-0.92%	-3.26%	+1.04%p
	RL Daily	-2.36%	-3.26%	+0.69%p
	RL Hourly	-3.48%	-6.52%	+0.00%p
High Traffic	No-ES	602 W	0.59 Mbps	30.21%
	Conservative	+0.44%	+1.69%	+2.78%p
	Aggressive	-0.61%	+0.00%	+1.73%p
	Sector-wise	+0.33%	+0.00%	+1.39%p
	Cell-wise	+0.43%	+0.00%	+1.39%p
	RL Daily	-1.65%	+0.00%	-1.74%p
	RL Hourly	-2.45%	+1.69%	-2.43%p

- 1 MBPS minimum throughput constraint
- Violation" means the time portion in which the constraints are not satisfied

- Energy saving performance depends on the scenario's traffic pattern, such as traffic volume and traffic distribution among cells
 - After a cell is turned off, other activated cells need to serve users not to incur throughput violations
 - Network status needs to be considered holistically when deciding to activate or deactivate cells, indicating that our RL-based operations are required

Algorithm	Power	Violation (2 Mbps)	
No-ES	535 W	18.4 Mbps	
RL Hourly (1 Mbps)	-3.48%	+3.13%p	
RL Hourly (2 Mbps)	-3.02%	+0.00%p	

1 Mbps vs. 2 Mbps minimum throughput constraint

- Problem
 - Energy saving problem: Minimizing energy comsumption while guaranteeing a given level of throughput by controlling the parameters of a heuristically designed algorithm
- Optimization Framework : Reinforcement learning
- Network's behaviors and states are replicated with a simulator that reconstructs real world scenarios
 with the data collected from the equipment
- Evaluation results show that solution can achieve maximum energy saving while fulfilling the throughput requirement

Take away

- 1. 주파수 대역을 고려한 cell on/off 알고리즘은 이미 있음
- 2. 강화학습을 위해 필요한 파라미터들을 기억할 것
 - Cell의 load(traffic으로 대체 가능할까?)
 - Activation and deactivation threshold를 action으로 사용
- 3. Engineering에서 사용하는 강화학습은 실제 상황에 직접적으로 dynamic하게 적용하는 것이 아니라 offline으로 prediction한 데이터로 학습 후 적용시킨다는 점

Weekly Seminar

Date: 2024, May, 10

2024.05.10

Thank You

