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Contributions

* Formulating an RL problem controlling a cell on/off algorithm in a way to minimize energy
consumption while satisfying throughput constraints

* Proposing a range of operational modes on top of the trained RL agent

* Presenting experimental results with a replicative simulator
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Introduction

* The energy that base stations consume has increased compared to the legacy system, thus placing a
high burden on service providers in OPEX (OPeration Expendigure)

* Along with the OPEX reduction, saving energy decrease carbon emission, thus, preserve environments

* This paper address the energy saving of base stations by turning off cells, while not severely
impacting network performance




Reinforcement Learning

* Turning the cells off varies depending on the traffic, channel characteristics, and mobility pattern of
the users associated with the cells

* Designing a universal algorithm that can be applied to all circumstances is almost infeasible. Also, each
network operator has its own criteria on service level

* The energy saving needs to be personalized and adaptive to the circumstanceds as well as the
network operator’s requirements.




System Model — Replicative Simulation

* Itisinfeasible to try out unproven controls on actual RAN
equipment for it would degrade user experience by
interrupting the service

= Most reinforcement learning based problem formulations make
use of simulations - e
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* To match with the LTE Conﬁguration of the target region, four Figure 1. Frequency band allocation for South Korean telcos
spectrum bands each with the corresponding spectrum
characteristics are virtually implemented



System Model — Cell On/Off Algorithm

* Cell on/off algorithm which proposed in this paper works with a couple of threshnold values on the
PRB utilization

1. Activation threshold
2. Deactivation threshold

» After the cell activation or deactivation, UEs are distributed among the activated cells by a load
balancing algorithm

* Itis crucial to find the appropriate threshold values for the algorithm to operate optimally depending
on the state of the network




System Model — Power Model

* The RAN topology consists of three sectors on a single site
and four cells per sector (4 * 3 =12 cells)
= Each cell is served by a separate RU with a different power

consumption profile depending on serving bandwidth and
hardware settings

e : RU A Idlec Mode
—a—: R1J A Normssl Moxle .

é s ©RU B Idlc Mode
= —&—: R1T B Normnal Maode
{_’;_ el ® RUC e Mode
= -~ —a—: R17T C Nonmal Made
* Power consumption linearly increases with the number of 2
PRB in use E 3 : Idle mode power saving cfficiency :
RUB=>=RUA
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The number of Physical Resource Blocks

* Many factors to consider when deciding optimal

, _ Figure 2. j ' ve RB I
thresholds for energy saving algorithm igure 2. Power consumption trend according to active RBs per ce

= Bandwidth, power model, hardware configurations, traffic pattern
etc.




Reinforcement Learning-Based Customized Energy Saving Policy - RL Model Design

* PPO (Proximal Policy Optimization), or DDPG (Deep Deterministic Policy Gradient) are used to derive
an optimal policy, T(als)

* Detailed formulation
= State

I — gl l [ [
St = (Le—1s s le—gs Ce—1s ooy CE—K)
« L Load of cell i at time k
. cti: On/Off state of cell i

= Action:

e Activation and deactivation threshold for cell i at time t




Reinforcement Learning-Based Customized Energy Saving Policy - RL Model Design

* Detailed formulation
= Reward
* Power reward: 1,5y er
Toower = Bo + Brlic
- Bgit
o A Brax = Prin) = Total reward
1 = 2(@Mower + (1 — @)Tepye)

* Throughput reward: r;
tput Where «a is a real number satisfying0 < a < 1

t i e
op + ,81pk£r if ki >Q
B¢ + Bk,  otherwise

q: Minimum throughput constraint

Ttput =

ki: Throughput of cell i at time t
gp: _Q/(Tmax - CI)
- B 1/ (Tynax — @)

- B§:—10q
B 10w



PPO (Proximal Policy Optimization)

* PPOis known to provide robust performance on the
convergence of the training and support both the discrete
and continuous action space

Replicated Scenario

[ Distributed RL Environment r
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Figure 3. Reinforcement Leaming based Energy Saving Model
Architecture with Distributed Comoputing Techniques




Reinforcement Learning-Based Customized Energy Saving Policy — Various Operational Modes

* To balance between the energy saving performance and cost of running the Al-based solution, this
paper explores various operational modes

* One extreme mode is to dynamically apply inferred actions from the trained models

= Computation power at the backside of the system T
= Requiring more resources

* Propose to operate the energy saving solutions whith scheduling tables of the thresholds generated
offline

= Tables can be created using trained models and a network status prediction module to forecast future
network conditions

* By varying periods for controls and prediction, we can balance the performance and the required
computation power



Reinforcement Learning-Based Customized Energy Saving Policy — Evaluation Scenarios

Low Operating Cost High Energy Saving

100

Manual Setting

* Service provider’s default setting

Scheduled Operation

* Optimizing thresholds based on
a traffic prediction

Dynamic Operation

* Optimizing thresholds based on
a real-time traffic

= High Traffic
Middle Traffic
b 3 (Balanced)
____ Middle Traffic

(Unbalanced)

* Manual update

* Update thresholds per long term period
(week/month/year)

—— Low Traffic

* Update thresholds per N-hours

Sector Avg. PRB Usage (%)

® ® ® ® ® 2 ®
No-ES Default Setting Single Fixed Threshold Fixed Threshold Adjustment Adjustment
Fixed Threshold per Day of Week per Hour of Day per N-hours for every hour
= = = = = = y =
S £ A 3 3 A _N-hours A
£ £ £ ] DN 4 £ {l st ' ; :
= £ L < £ = = 0 2 4 6 8 10 12 14 16 18 20 22 24
et Month T Month = Month 2 ay = & Tour e our Time (Hour)
Figure 4. Range of operationg options Figure 5. Traffic data used in the expeniments

* Dynamic operation:

= Maximizes energy-saving performance

 Offline-based operation

= Cost-effective energy savings



Reinforcement Learning-Based Customized Energy Saving Policy — Evaluation Scenarios

 No-ES » Sector/Cell-wise Daily Fixed Threshold
= All cells are activated for all time = Thresholds are determined with the history of
traffic load
» Aggressive/Conservative Daily Fixed Threshold = Deactivate and activate: 25%, 75%

= Aggressive algorithm

- Higher values on both thresholds RL-based Daily Fixed Threshold
- Deactivate and activate: 60%, 80% = |Infers a single set of thresholds for a day

= Conservative algorithm

- Lower values on both thresholds RL-based Hourly Fixed Threshold

- Deactivate and activate: 20%, 40% = Infers threshold values per hour for a scenario




Reinforcement Learning-Based Customized Energy Saving Policy — Evaluation Results

Scenario Algorithm Power Throughput Violation . ., .
No-ES 349 W 7.65 Mbps 0.00% Energy saving performance depends on the scenario’s traffic
Conservative —1.86% —8.667% +0.00%p
Aggressive —4.89% —57.01% +9.03%p i i ictri i
IR B - i Wit e 10.00%, pattern, such as traffic volume and traffic distribution among
Cell-wise -0.71% —1.94% +0.00%p
RL Daily ~11.87% | —11.94% | +0.00%p cells
RL Hourly -11.90% —8.21% +0.00%p
NoBS SI3W__1 2.5 Mbps 0:3)% * After a cell is turned off, other activated cells need to
Conservative —1.48% —0.77% +0.34%p
Middle Aggressive —2.48% —7.34% +2.43%p ) ) )
Traffic Sector-wise | —1.83% | +0.39% | —0.35%p serve users not to incur throughput violations
(Balanced) Cell-wise -1.07% +3.09% —0.35%p
RL Daily —5.68% —6.18% | —0.35%p * Network status needs to be considered holistically
RL Hourly —5.99% —9.65% +0.34%p
No-ES 535 W 1.84 Mbps 3.82% . . : T
Comservative T —0.74%, _2,17% T0.35%p when deciding to activate or deactivate cells, indicating
Middle Aggressive ~1.38% —4.35% +1.04%p
Traffic Sector-wise —0.52% —~1.09% —1.04%p that our RL-based operations are required
(Imbalanced) | Cell-wise —0.92% -3.26% +1.04%p
RL Daily —2.36% —3.26% +0.69%p
RL Hourly —3.48% —6.52% +0.00%p
No-ES 602 W 0.59 Mbps 30.21%
Conservative +0.44% +1.69% +2.787%p
Aggressive ~0.61% +0.00% +1.73%p Algorithm Power Violation (2 Mbps)
High Traffic | Sector-wise +0.33% +0.00% +1.39%p No-ES 535 W 18.4 Mbps
Cell-wise +0.43% —{—()()()% -{-1$()(pr RL H()urly (1 r\/lbp\) _318(%_ +l‘130('p
RL Daily —1.65% +0.00% —1.74%p RL Hourly (2 Mbps) | —3.02% +0.00%p
RL Hourly —2.45% +1.69% —2.43%p

- 1MBPS minimum throughput constraint - 1 Mbpsvs. 2 Mbps minimum throughput constraint

- Violation” means the time portion in which the constraints are not satisfied
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Conclusion

* Problem

= Energy saving problem: Minimizing energy comsumption while guaranteeing a given level of throughput by
controlling the parameters of a heuristically designed algorithm

* Optimization Framework : Reinforcement learning

* Network’s behaviors and states are replicated with a simulator that reconstructs real world scenarios
with the data collected from the equipment

* Evaluation results show that solution can achieve maximum energy saving while fulfilling the
throughput requirement
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